Pre Recorded
This course will cover the concepts, technical background and use of stable isotope mixing models (SIMMs) with a particular focus on running them in R. This course will cover the concepts, technical background and use of stable isotope mixing models (SIMMs) with a particular focus on running them in R. Recently SIMMs have become a very popular tool for quantifying food webs and thus the diet of predators and prey in an ecosystem. Starting with only basic understanding of statistical models, we will cover the do’s and don’ts of using SIMMs with a particular focus on the widely used package SIAR and the more advanced MixSIAR. Participants will be taught some of the advanced features of these packages, which will enable them to produce a richer class of output, and are encouraged to bring their own data sets and problems to study during the round-table discussions.
The course is aimed at biologists with a basic to moderate knowledge in R. The course is aimed at anyone (academic or industry) who research is heavily reliant on analysing stable isotope data. There is a strong association with data on food webs and trophic relationships, but the tools learned can be applied to other systems.
Last Up-Dated – 28:04:2023
Duration – Approx. 28 hours
ECT’s – Equal to 3 ECT’s
Language – English
There will be morning lectures based on the modules outlined in the course timetable. In the afternoon there will be practicals based on the topics covered that morning. Data sets for computer practicals will be provided by the instructors, but participants are welcome to bring their own data.
A basic understanding of statistical concepts. Specifically, generalised linear regression models, statistical significance, hypothesis testing.
Familiarity with R. Ability to import/export data, manipulate data frames, fit basic statistical models & generate simple exploratory and diagnostic plots.
A laptop computer with a working version of R or RStudio is required. R and RStudio are both available as free and open source software for PCs, Macs, and Linux computers. R may be downloaded by following the links here https://www.r-project.org/. RStudio may be downloaded by following the links here: https://www.rstudio.com/.
All the R packages that we will use in this course will be possible to download and install during the workshop itself as and when they are needed, and a full list of required packages will be made available to all attendees prior to the course.
A working webcam is desirable for enhanced interactivity during the live sessions, we encourage attendees to keep their cameras on during live zoom sessions.
Although not strictly required, using a large monitor or preferably even a second monitor will improve he learning experience
PLEASE READ – CANCELLATION POLICY
Cancellations/refunds are accepted as long as the course materials have not been accessed,.
There is a 20% cancellation fee to cover administration and possible bank fess.
If you need to discuss cancelling please contact oliverhooker@prstatistics.com.
If you are unsure about course suitability, please get in touch by email to find out more oliverhooker@prstatistics.com
Basic concepts.
Module 1: Introduction; why use a SIMM?
Module 2: An introduction to bayesian statistics.
Module 3: Differences between regression models and SIMMs.
Practical: Revision on using R to load data, create plots and fit statistical models.
Round table discussion: Understanding the output from a Bayesian model.
Approx 8 hours
Basic concepts.
Module 1: Introduction; why use a SIMM?
Module 2: An introduction to bayesian statistics.
Module 3: Differences between regression models and SIMMs.
Practical: Revision on using R to load data, create plots and fit statistical models.
Round table discussion: Understanding the output from a Bayesian model.
Approx 8 hours
Understanding and using SIAR.
Module 4: Do’s and Don’ts of using SIAR.
Module 5: The statistical model behind SIAR.
Practical: Using SIAR for real-world data sets; reporting output; creating richer summaries and plots.
Round table discussion: Issues when using simple SIMMs.
Approx 8 hours
SIBER and MixSIAR.
Module 6: Creating and understanding Stable Isotope Bayesian Ellipses (SIBER).
Module 7: What are the differences between SIAR and MixSIAR?
Practical: Using MixSIAR on real world data sets; benefits over SIAR.
Round table discussion: When to use which type of SIMM.
Approx 8 hours
Advanced SIMMs.
Module 8: Using MixSIAR for complex data sets: time series and mixed effects models.
Module 9: Source grouping: when and how?
Module 10: Building your own SIMM with JAGS.
Practical: Running advanced SIMMs with JAGS.
Round table discussion: Bring your own data set.
Works at: Institute or University: Hamilton Institute, Maynooth University
Andrew Parnell is the Hamilton Professor of Statistics in the Hamilton Institute at Maynooth University. His research is in statistics and machine learning for large structured data sets in a variety of application areas. He has co-authored over 90 peer-reviewed papers in journals such as Science, Nature Communications, and Proceedings of the National Academy of Sciences, and has methodological publications in journals such as Statistics and Computing, Journal of Computational and Graphical Statistics, The Annals of Applied Statistics, and Journal of the Royal Statistical Society: Series C. He has many years experience in teaching Bayesian statistics, time series modelling, and statistical machine learning to students at every level from undergraduate to PhD. He enjoys collaborating with other scientists in areas as diverse as climate change, 3D printing, and bioinformatics.
Classes from 09:00 to 17:00
Theory – Introduction to GIS.
Practical – Introduction to GIS with R: Import and plot data.
Theory – Coordinate systems.
Practical – Projecting vectorial & raster files.